GOVERNMENT POLYTECHNIC, KORAPUT DEPARTMENT OF MECHANICAL ENGINEERING DUI ON NG ME M | cipline: ECHANICAL NGG Subject: THEORY OF MACHINE | Semester: | Name of the Teaching Faculty: SHARMILA SABAR | |---|---|---| | | No. of
days/per
week
class
allotted:4 | Semester From date: 20/4/21 To Date: 03/8/21 No. of Weeks:15 | ## COURSE OUTCOMES Students will develop an ability towards - 1. Understanding machine system consisting of different link assemblies as components - 2. Comprehending Working principle of machine components such as clutch, brakes, bearings based on friction - 3. Comprehending working principles related to power transmission systems and predicting the work involved and efficiency. - 4. Comprehending working principle in speed and torque regulating devices such as governor and flywheels - 5.Determination of amount and position of masses required towards static and dynamic balancing - 6. Comprehending types and causes of vibration in machines and predicting remedies measure | 2 | | | | | |-----------------|-------------------------|--|-----------------------------------|--| | 111 - ale | Class Day | Theory/Practical Topics | | | | Week | Class Day | Introduction, kinamatic link,kinematic pair, classification of kinamatic | | | | 1ST | 1ST | Introduction, kinamatic link,kinematic pair, classification | | | | | | nir | No. | | | | 2ND | Types of constrained motion,kinam | atic chain | | | | 3 RD | Mechanism, machine, inversion | | | | | | Four har link mechanism & inversions | | | | | 4 [™] | C. C. SOCIALIS SPECIAL SECURIOR CONTROL CONTRO | | | | 2 ND | 151 | Continued | | | | | 2 ND | Lower pair, higher pair, cam & follo | ower | | | | 3RD | Cam & follower | | | | 1 | 4 TH | Review of the chapter | | | | 3RD | 151 | Friction, friction between nut & so | crew for square thread | | | \ | 2 | Screwjack | | | | | 3 | Bearing & it's classification | | | | | 1 | Description of roller, needle rolle | er & ball bearing | | | 1 | тн , | Toque transmission in flat pivot | bearing & related numerical | | | 1 7 | | Torque transmission in conical | pivot bearing & related numerical | | | | | Flat collar bearing of single & m | nultiple types related numerical | | | | | H Torque transmission for single | plate clutch & related numerical | | | - | 5TH | Torque transmission for multip | ole clutch & related numerical | | | | - | ND Working of simple frictional br | ake | | | | | Working of absorption type of | dynamometer | | | | | tor types of drives of velocity ratio | | | |------------------|------------------------|---|--|--| | | | the chanter ion types of drives of velocity ratio | | | | | 4 TH | Review of the chapter Concept of power transmission, types of an experience of velocity to the chapter | | | | 6 TH | 1 ST | Concept of power & chain drives, | | | | | 2 ND | Review of the chapter Concept of power transmission, types of drives Types of belt, gear & chain drives, computation of velocity ratio Length of open belt & related numerical Length of cross belt& related numerical | | | | | 0 | Length of open belt related numerical tension, initial tension, | | | | | 4 TH | Length of | | | | 7 TH | 181 | Ratio of belt tension, certain Vbelts & v belt pulleys crowning | | | | 1000 | 2ND | Vocito | | | | | 3RD | Gear drives & terminology | | | | 1.0 | 3 RD | Gear drives & terminology Gear trains, working of simple gear train Working of reverted & compound gear train Working of enjoyelic gear train | | | | 8TH | 1 ST | Working of reverted & compound good | | | | · - | 2 ND | Working of reverted & con-
Working of epicyclic gear train | | | | | | Working or op, | | | | | 3 RD | Numericals | | | | 7 | 4 TH | Design of the chapter | | | | 9 ^{тн} | 1 ST | | | | | | 2 ND | | | | | | 3 RD | Working of watt governor & related numerical Working of proel governor & related numerical | | | | | 4 TH | Working of proei governor & related numerical Working of porter governor & related numerical | | | | 10 TH | 1 ST | Working of hartnell governor & related numerical | | | | | 2 ND | Continued | | | | | 3 RD | | | | | | 4 TH | Flywheel function of flywheel difference between ny | | | | 11 TH | 1ST | Fluctuation of energy & cofficieant of fluctuation speed | | | | | 2 ND | Numerical | | | | | 3 RD | Numerical | | | | | 4 TH | A CONTRACT OF THE | | | | 12 TH | | Review of the chapter | | | | 12 | 1ST | Balancing, concept of static balancing | | | | | 2 ND | Static balancing | | | | | 3 RD | Dynamic balancing | | | | | 4 TH | Dynamic balancing | | | | 13 TH | 1 ST | Principle of balancing of reciprocating parts | | | | | 2 ND | Causes & effect of balancing | | | | | 3 RD | Difference between static & dynamic balancing | | | | | 4 TH | Difference between static & dynamic balancing | | | | 4 ATH | 1 ST | Review of the chapter | | | | 14 TH | | Introduction to vibration & related terms | | | | | 2 ND | Classification of vibration | | | | | 3 RD | Basic concept of natural vibration | | | | A. Carrier | 4 TH | Basic concept of forced vibration | | | | 15 [™] | 1 ST | Basic concept of damped vibration | | | | | 2 ND | Torsional & longitudinal vibration | | | | | 3 RD | Causes & remedies of vibration | | | | | _ | | | | | | 4 TH | Review of the chapter | | | ## NING RESOURCES: ext Book of Theory of Machine R.S Khurmi S.Chand - Text Book of Theory of Machine R.K. Rajput S.Chand - 3. Text Book of Theory of Machine P.L.Ballany Dhanpat Rai - 4. Text Book of Theory of Machine Thomas Bevan Pearsion Sign. Of Faculty concerned Sharmila Labar. Signature. Of HOD VTR UF/ L C Plineipal